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We use the finite-size scaling method to estimate the critical exponent 2 that 
characterizes the scaling behavior of conductivity and permeability anisotropy 
near the percolation threshold Pc. Here 2 is defined by the scaling law 
kl/k , - 1 ~ (p - p,.)a, where k I and k,  are the conductivity or permeability of the 
system in the direction of the macroscopic potential gradient and perpendicular 
to this direction, respectively. The results are 2(d=2)~0.819+0.011 and 
2(d= 3)~-0.518 +0.001. We interpret these results in terms of the structure of 
percolation clusters and their chemical distance. We also compare our results 
with the predictions of a scaling theory for 2 due to Straley, and propose 
that 2 ( d = 2 ) = t - - f l B ,  where t is the critical exponent of the conductivity or 
permeability of the system, and fin is the critical exponent of the backbone of 
percolation clusters. 
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1. I N T R O D U C T I O N  

O v e r  the past  two  decades  r a n d o m  pe rco la t ion  n e t w o r k s  ~'2~ have  been an 

i m p o r t a n t  tool  for m o d e l i n g  t r anspo r t  processes  in d i so rde red  systems, 
such as p o r o u s  media ,  c3~ b r a n c h e d  po lymer s  and  gels, 14-7~ and  c o m p o s i t e  

solids. 181 In par t icu lar ,  the effect of  d i s o r d e r  on  t r anspo r t  p roper t ies  has 

been s tudied,  and  a be t te r  u n d e r s t a n d i n g  has been  deve lop  by c o m b i n i n g  

a var ie ty  of  t echn iques  and  ideas, e.g., scal ing concepts ,  e f fec t ive-medium 
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approximation, t9) renormalization-group methods, and large-scale computer 
simulations. ~~ Considerable attention has been focused on the properties 
of percolation networks near their percolation threshold p,.. Consider a 
percolation network in which a fraction p of the bonds are conducting and 
the rest are insulating. As p,. is approached, the bulk conductivity g of a 
d-dimensional network vanishes according to the power law 

g"~(P-Pc ) '  (1) 

where the critical exponent t is largely universal, and t l~  t ( d = 2 ) ' - ,  1.3 
and t(d= 3 ) =  2.0. Likewise, in a percolation network in which a fraction 
p of bonds represents pores of a porous medium through which a fluid 
flows, while the rest of the bonds are closed to fluid flow, the permeability 
k of the network vanishes according to the power law 

k ~ ( p - p , . )  e (2) 

where e is also largely universal. If the conductance and the permeability 
of the bonds are distributed according to a distribution function f ( x )  such 
that f (0 )  is nonsingular, then t=e.  This is the case we consider in this 
paper. 

The vast majority of the percolation systems that have been studied so 
far are isotropic, whereas transport in anisotropic percolation networks are 
relevant to many important processes and phenomena. Two important 
examples that are of interest to us are flow in sedimentary rocks and their 
fracture networks, and transport in porous catalytic systems. Sedimentary 
rocks and many other types of porous media are anisotropic, 13~ even at 
very small scales. Likewise, fracture networks of rocks are anisotropic and 
are characterized by a permeability tensor, rather than a single value of 
permeability. In porous catalytic materials, transport of molecules can be 
restricted to a certain direction or plane such that it can be effectively con- 
sidered as an anisotropic transport process, characterized by a diffusivity 
tensor rather than a single diffusivity. There are several other classes of 
disordered materials to which anisotropy is important. For example, many 
solid-state materials, such as (Sn)x and T C N Q  salts, can be obtained only 
as small crystals, and their effective transport properties must be measured 
in compact powders where their strong anisotropic properties are averaged 
in a poorly-understood fashion. Carbon-black polyvinylchloride and other 
polymer composites are also highly anisotropic. Transport properties of 
such anisotropic materials have been measuredJ 12 ,61 

As discussed by Straley, ~7~ one can have at least five different kinds of 
anisotropy, especially in a percolation system. However, only one of them 
is of interest to us in this paper. This is a percolation network in which 
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bonds in each distinct direction have different conductivity or permeability. 
Shklovskii t'8) was the first to study the conductivity anisotropy, measured 
as A = g i g , - - 1 ,  where g/ and g, are, respectively, the macroscopic 
conductivities of the network in the longitudinal direction (the direction of 
macroscopic potential gradient) and transverse direction (perpendicular to 
the direction of macroscopic potential gradient). Near Pc one has the power 
law 

A .-~ (p - p,.);" - (3) 

where ). is a presumably universal critical exponent. A can also be defined 
in terms of the permeabilities of the system, A - - k l / k , - 1 .  The relation 
between 2 and other percolation exponents is discussed below. 

Unlike the exponents t and e, and in spite of its relevance to several 
important and practical problems, no accurate estimate of 2 is available. 
Although a few attempts have been made 1'9 2,1 for estimating 2, they have 
not yielded accurate estimates of 2. In this paper, we use finite-size scaling 
theory (FSST), perhaps the most accurate method of extracting the critical 
exponents, to obtain accurate estimates of 2 2 = 2 ( d =  2) and 23 = 2 ( d =  3). 
Our interest in this quantity is due to our research effort for understanding 
flow in fractured rocks 122) and disordered solids. 1231 We compare our results 
with the predictions of a scaling theory of conductivity anisotropy due to 
Straley tm and also provide a geometrical interpretation of the results. 

2. FINITE-SIZE SCALING THEORY 

According to FSST, the variation of A for a network of linear size L, 
with L ~ r  where ~p is the correlation length of percolation, is written as 

A .,. L-*h( ) , )  (4) 

where y = L I / " ( p - p , . ) ~  (L/~p) '/', v is the critical exponent that charac- 
terizes the divergence of ~p as p~ is approached, ~ p ~  ( p - p , . ) - " ,  and 
x = fl/v. Here h(y) is a universal scaling function which is nonsingular at 
p = p,.. However, Eq. (4) is valid for very large values of L, and simulating 
very large networks is not straightforward. To take into account the effect 
of finite values of L, Eq. (4) is rewritten as 

A -,~ L - " [  1 + a, h . (L)  + a,_hz(L)] (5) 

where h , (L)  and h2(L) are two correction-to-scaling functions which are 
particularly important for small and moderate values of L, and a's are con- 
stant. There are no theoretical predictions for the general forms of h , (L)  
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and h2(L), and one usually has to try various functional forms in order to 
find the best fit to the numerical results. Equation (5) tells us how to 
estimate 2: Calculate A at p -- Pc [where the value of h(0) is irrelevant] for 
various values of L and fit the results to Eq. (5) to estimate x. Since exact 
or accurate estimates of v for d =  2 and 3 are already available, 2 can be 
estimated accurately. This is the approach that we use here, whereas earlier 
works measured A as a function of p. 

3. RESULTS AND DISCUSSIONS 

We carried out Monte Carlo simulations in both two and three dimen- 
sions. We imposed a potential gradient in one direction, say x, with k = 10 
for the bonds in this direction, and used periodic boundary  condition(s) in 
the y and z directions with k =  1 for the bonds in these directions. The 
governing equations for the nodal potentials were solved by the conjugate 
gradient method. The simulations were carried out with the square network 
at p c =  1/2 and with the simple-cubic network at pc ~- 0.2488. After 
calculating kx, we imposed the macroscopic potential gradient in the y 
(or z) direction and calculated ky, from which we obtained A = k.,./k ~.- 1. 
Table I presents the statistics of our simulations. 

In order to obtain accurate estimates of 2, we tried various forms for 
the functions h~(L) and h2(L). The most accurate fit of our  results was 
provided by h~(L) -  (In L) -~ and h2 (L)=  1/L, as previously suggested by 
us. 124~ The functional forms of hi(L) and h2(L) proposed by Duering and 
Roman ~25~ did not provide fits of our  results with a comparable accuracy. 
Thus, we believe that o u r  estimates of 2 are very accurate. Figures 1 and 
2 show the results, from which we estimate that 

22 "~ 0.819 -t- 0.011 (6) 

23 -~ 0.518 -I- 0.001 (7) 

The estimated errors are purely statistical. Our  estimates should be com- 
pared with the results of Sarychev and Vinogradoff, Iz~ 22 "" 0.9_+0.1 and 

Table I. Number  of Realizations N for Each Ne twork  Size L 

L(d= 2) 8 16 32 64 128 
N(d= 2) 2000 2000 1250 550 250 
L(d= 3) 4 8 16 32 48 64 
N(d= 3) 1000 400 200 60 35 25 
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Fig. 1. Permeability anisotropy A versus the linear size L of the square network at the per- 
colation threshold p,. = I/2. 

) - 3  "~  0.3 + 0.1, and with the results of Lobb et  al., 119~ 22 ~- 0.86 -t- 0.1. Our )-2 
is consistent with their estimates, but with much smaller estimated errors. 

The result 2,_> 2 3 is surprising, since one expects that on a three- 
dimensional network, which contains a much larger number of current- 
carrying transport paths than a two-dimensional network, the anisotropy 
vanish faster, i.e., 2 3 > ) - 2 .  Sarychev and Vinogradoff have argued that in 
order to understand why )-2 >)-3 one must consider the structure of the 
backbone, i.e., the current-carrying part of the sample-spanning percolation 
cluster. The backbone consists of c261 of links and blobs. A link is a bond 

Fig. 2. 
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Permeability anisotropy A versus the linear size L of the simple-cubic network at the 
percolation threshold p~ - 0.2488. 
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that connects two blobs such that if it is cut, the backbone is split into two 
pieces, and the blobs are the multiply-connected aggregates of current- 
carrying bonds. Sarychev and Vinogradoff have argued that since the blobs 
are less dense in three dimensions than in two dimensions, one must have 
~.2 > 23.  However, since we do not know how to relate 2 to the exponents 
that characterize the structure of the blobs, it is difficult to check the rigor 
of their argument. 

The fact that A vanishes as p,. is approached is due to the tortuous 
nature of the transport paths. Near p,. the transport paths are so tortuous 
that it becomes impossible to distinguish between different directions, and 
as a result A vanishes at p,.. Thus, to understand why 22 > 23, we must 
have a measure of the tortuosity of percolation clusters and their backbone. 
One measure may be the length lmin of the minimum path or chemical 
distance between two points of the cluster. Iz7 291 In general lmin is greater 
than r, the Pythagorean distance between the two points. For r < r  one 
has 

lmi n ~ r ami" (8 )  

where dmin is the fractal dimension of the shortest path, and is a universal 
quantity. Equation (8) implies that near p,. one has 

lmi n ~ ( p -  pc) - ' ~ "  (9) 

Since 13~ dmi,(d=2)--~ 1.13 and d m i , ( d = 3 ) =  1.34, we obtain /min t 
( p _  p,.)-~.5 for two-dimensional systems and lmi, ~ (P- -p , . ) -H8 for three- 
dimensional systems. That is, as p,. is approached, /mi, increases less 
strongly in three dimensions than in two dimensions. This may be inter- 
preted as meaning that near Pc the tortousity of the three-dimensional 
transport paths increases less strongly than that of the two-dimensional 
ones. As a result, at a fixed distance from Pc, the tortuosity of two- 
dimensional transport paths is larger than that of three-dimensional ones. 
Since A vanishes at p,. because the tortuosity is infinite, the implication is 
that the anisotropy should vanish faster in two dimensions than in three 
dimensions, consistent with our results. 

Straley ~7~ has proposed a scaling relation between t, v, and 2, which 
is given by 

2 = 2 t - 2 ( d -  l)v (10) 

Since v ( d = 2 ) = 4 / 3  and v(d= 3)-~ 0.88, Eq. (I0) predicts that 22-~ -0.06 
and 23 ~0.48. The two-dimensional prediction is clearly wrong, as it 
predicts that the anisotropy diverges at p,.. However, Straley's prediction 
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for 23 is close to our estimate. Moreover, Eq. (10) predicts that at d =  6, the 
mean-field limit of percolation, 2 = 1, which, according to Straley, c~71 is an 
exact result. Thus, Straley's scaling equation provides a reasonable estimate 
of 2 for high-dimensional systems, but not for low-dimensional ones. 
Therefore, there may be a lower critical dimension d~>2 such that for 
d >  d/ a scaling relation such as (10) is very accurate, whereas the same 
scaling relation may break down completely for d <  d~. If this is the case, 
we should clearly have 2 < d /<  3. The existence of such a lower critical 
dimension for the critical exponents of transport properties of percolation 
networks was already suggested several years ago. ~3~'32~ 

Finally, we observe that in two dimensions, where Straley's relation 
breaks down, we have 22 ~ t -  fls, where fls is the critical exponent of the 
backbone fraction, i.e., the fraction of conducting bonds in the backbone. 
Since t33~ fls(d=2)', 0.48, our scaling relation predicts that 2 2 "~' 0.82, in 
excellent agreement with our estimate. In future papers ~22'23~ we will discuss 
the anisotropy of the permeability and conductivity of percolation 
networks in which the distributions of the bond conductance or per- 
meability may be singular or contain long-range correlations, situations 
that are frequently encountered in natural porous media such as rocks. 
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